6,764 research outputs found

    Partial Match Queries in Two-Dimensional Quadtrees : a Probabilistic Approach

    Full text link
    We analyze the mean cost of the partial match queries in random two-dimensional quadtrees. The method is based on fragmentation theory. The convergence is guaranteed by a coupling argument of Markov chains, whereas the value of the limit is computed as the fixed point of an integral equation

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    Generation of 3rd and 5th harmonics in a thin superconducting film by temperature oscillations and isothermal nonlinear current response

    Full text link
    The generation of harmonics of the voltage response is considered when an AC current is applied through a superconducting film above T_c. It is shown that almost at all temperatures the mechanism of the temperature oscillations created by the AC current and the temperature dependence of the resistance dominates over the isothermal nonlinear electric conductivity. Only in a narrow critical region close to T_c the latter is essential for the generation of the harmonics. A detailed investigation of harmonics generation provides an accurate method for measuring the thermal boundary conductance between the film and the insulating substrate. The critical behaviour of the third harmonic will give a new method for the determination of the lifetime of metastable Cooper pairs above T_c. The comparison of the calculated fifth harmonics of the voltage with the experiment is proposed as an important test for the applicability of the employed theoretical models.Comment: 8 pages, LaTeX, submitted to European Journal of Physics

    Forward Physics at the LHC: within and beyond the Standard Model

    Get PDF
    We review the detection capabilities in the forward direction of the various LHC experiments together with the associated physics programme. A selection of measurements accessible with near-beam instrumentation in various sectors (and extensions) of the Standard Model (SM) is outlined, including QCD (diffractive and elastic scattering, low-x parton dynamics, hadronic Monte Carlos for cosmic-rays), electroweak processes in gamma-gamma interactions, and Higgs physics (vector-boson-fusion and central exclusive production).Comment: 9 pages, 18 figs. Lectures given at the LAWHEP'07 School (Sao Miguel das Missoes, Brazil, 3-7 Dec 2007) to appear in Braz. J. Phys. Also presented in HLPW08 (Spa, Belgium, 6-8 Mar 2008) AIP Conf. Proceeds, to appear; and in HANUC European Grad. School (Jyvaskyla, Finland, 25-29 Aug. 2008

    Incompatible quantum measurements admitting a local hidden variable model

    Full text link
    The observation of quantum nonlocality, i.e. quantum correlations violating a Bell inequality, implies the use of incompatible local quantum measurements. Here we consider the converse question. That is, can any set of incompatible measurements be used in order to demonstrate Bell inequality violation? Our main result is to construct a local hidden variable model for an incompatible set of qubit measurements. Specifically, we show that if Alice uses this set of measurements, then for any possible shared entangled state, and any possible dichotomic measurements performed by Bob, the resulting statistics are local. This represents significant progress towards proving that measurement incompatibility does not imply Bell nonlocality in general.Comment: A few small changes, closer to the published versio

    Genuine hidden quantum nonlocality

    Full text link
    The nonlocality of certain quantum states can be revealed by using local filters before performing a standard Bell test. This phenomenon, known as hidden nonlocality, has been so far demonstrated only for a restricted class of measurements, namely projective measurements. Here we prove the existence of genuine hidden nonlocality. Specifically, we present a class of two-qubit entangled states, for which we construct a local model for the most general local measurements (POVMs), and show that the states violate a Bell inequality after local filtering. Hence there exist entangled states, the nonlocality of which can be revealed only by using a sequence of measurements. Finally, we show that genuine hidden nonlocality can be maximal. There exist entangled states for which a sequence of measurements can lead to maximal violation of a Bell inequality, while the statistics of non-sequential measurements is always local.Comment: 5 pages, no figure
    • 

    corecore